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Abstract. We propose and solve a model problem concerning the squeezing and stretching of
vesicles between two adhesive plates. Our model is two-dimensional: the vesicle’s contour is
represented through a closed curve. It has, however, the potential to represent the behaviour of the
average section of a vesicle in space. In particular, we compute the gap width that must be reached
in stretching the vesicle to make it snap into the loose, undistorted configuration. Detecting this
snapping would provide an independent measure for theadhesion potentialof the plates.

In the past years, much effort has been devoted to study how lipid membranes adhere either to
rigid walls or to other membranes. Most papers deal with the adhesion of a closed membrane,
also called avesicle. The simplest model to describe the adhesion of a vesicle to a wall employs
an adhesion free energyFa proportional to the area of the membraneS∗ in contact with the
wall, that is,

Fa := −w area(S∗)
where the positive, constitutive parameterw is usually referred to as theadhesion potential.
The elastic properties of a lipid membrane are described by a free energyFe which depends
on the principal curvatures of the surface that represents it. The simplest form forFe, also
known as the Canham–Helfrich Hamiltonian, reads as

Fe = κ

2

∫
S
(2H)2 da (1)

whereH is themean curvatureof the whole membraneS, possibly discontinuous along the
border ofS∗, a denotes the area-measure, andκ is a positive, constitutive parameter, called the
bending rigidity. The stable equilibrium configurations for an adhering membrane minimize
the functionalF := Fe + Fa subject to the isoperimetric constraint on the area ofS, which
reflects the fact that a lipid membrane does not leak molecules. A similar constraint is often
imposed on the volume enclosed within the membrane, when this is impermeable to the
environment fluid. This requirement can, however, be dropped when the osmotic pressure is
low enough, as is presumed here for simplicity. Adhesion in two dimensions has also been
explored by Seifert in [1], who studied transitions between free and bound vesicles. So far
the Euler–Lagrange equations for this functional have mainly been solved numerically (see,
e.g., [2]). Recently, we found a method which givesexactsolutions to these equations when the
membrane is represented as a plane curve in a simple two-dimensional model [3,4]. Clearly,
such a model would be unable to describe the wealth of all possible equilibrium shapes of a
membrane, but it provides a good approximation to their qualitative features when a single
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Figure 1. A vesicle between two parallel plates.

curve can be regarded as theaverage sectionof the membrane. One merit of this model
is illustrated below: it allows one to estimate the adhesion potentialw. It is known (see
section 6.1 of [5], and references therein) that measuring the interaction forces between two
adhering membranes should eventually result in measuring the adhesion potentialw. Here, we
take a different path. We solve an equilibrium problem for the curve that models a membrane:
we first squeeze and then stretch it between two parallel plates, to which it can adhere. The
total stretchε needed to make the curve lose contact with the plates and snap into a circle
depends on the adhesion potentialw, and is in general quite large. Measuringε should provide
an independent means to accessw. The developments below apply provided the value ofw is
not exceedingly high, since in that case the membrane might break up.

Consider a closed curvec with fixed length 4L that adheres to two parallel plates, 2d apart
(see figure 1). The same geometric setting was considered by Lipowsky and Seifert [6], who
were, however, concerned with the appropriate definition of an effective contact angle for an
open membrane between two plates. For equilibrium shapes symmetric with respect to both
coordinate axes, the free energy of the curve is given by

F = κ

2

∫
c

σ 2 ds − 4wL∗ (2)

wheres is the arc-length alongc and 2L∗ is the length of each adhering segment. Here, both
κ andw are scaled to a characteristic length, which, however, does not affect their ratio. We
require the length ofc to be prescribed, as is the area of a closed membrane, but we impose no
constraint upon the area enclosed byc. Mathematically, the adhesion affects the equilibrium
configurations of a membrane through a boundary condition on the points where the membrane
detaches itself from the plates: there, the curvatureσ of c suffers a discontinuity, while the
unit tangentt remains continuous. For a flat plate,σ jumps from 0 to

σ ∗ =
√

2w

κ
(3)

as proved by Seifert and Lipowsky [2]. We denote byϑ the angle thatt makes with the unit
vectorex orthogonal to the plates, so that for the quarter curve we concentrate on,ϑ ranges
in the interval [0, π2 ] (see figure 1). Since the gap between the plates is fixed, the energy
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functional in (2) is further subject to the constraint∫ L∗

0
cosϑ(s) ds =

∫ π
2

0

1

σ
cosϑ dϑ = d (4)

whereL∗ := L−L∗ is the length along whichc is not in contact with the plate atx = d, and
use has also been made of the identity

σ = dϑ

ds
. (5)

It is shown in [4] that under these assumptions the curvature of the equilibrium shape ofc is
given by

σ = σ ∗
√

1 + ν cosϑ (6)

whereν > −1 is the Lagrange multiplier associated with the constraint (4).
Let ξ andβ be the dimensionless parameters defined as

ξ := d
√

2w

κ
β := L

√
2w

κ
. (7)

The former is a scaled measure ofd, while the latter is better interpreted as a dimensionless
measure ofw. By (3) and (7), making use of (6) in (4), we arrive at

ξ =
∫ π

2

0

cosϑ√
1 + ν cosϑ

dϑ =: ξ0(ν). (8)

Similarly, the requirement thatL > L∗ is expressed as

β >
∫ π

2

0

dϑ√
1 + ν cosϑ

=: β0(ν). (9)

Sinceξ0 is a strictly decreasing function which ranges in the whole positive real line for
−1 < ν < +∞, there is a unique rootνξ of (8) for every dimensionless half-widthξ of the
gap between the plates. This indeed corresponds to an adhering shape ofc, provided that
β satisfies (9) forν = νξ : if β > β0(νξ ), the adhering lengthL∗ is positive, whereas if
β = β0(νξ ), the membrane touches each plate at a single point. Whenever (9) fails to be
satisfied, there is no possible equilibrium shape ofc adhering to the plates. By (6) and (2),
the dimensionless energye := F√

8κw
of an adhering membrane is obtained by evaluating the

function

e(ν) :=
∫ π

2

0

√
1 + ν cosϑ dϑ +

∫ π
2

0

1√
1 + ν cosϑ

dϑ − β (10)

on the rootνξ of (8) for the chosenξ . This function attains its minimum atν = 0, while it
diverges whenν → −1. For an adhering shape ofc, e can also be expressed as a function
of ξ , by inverting equation (8): it then attains its minimum atξ = 1; it diverges to +∞ for
ξ → 0+, whereas it grows linearly at infinity.

These general facts will now serve to solve a specific problem. Let the plates be initially
so far apart that the membrane can freely acquire its circular equilibrium shape. Then, imagine
bringing them closer, so that the circular membrane just fits in the gap between them: this
amounts to settingξ = ξc := 2β

π
. We ask for which values of the adhesion potential the

membrane would then climb and adhere along the plates to reduce the total energy. Since here
the prescribedξ also depends onβ, the answer requires some analysis. From (8) and (9), we
first arrive at the estimate

π

2
> β0(νc)

ξ0(νc)
(11)
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Figure 2. The energy difference1e = e− ec for β = 10 as a function of the scaled half-widthξ .

Figure 3. The total stretchε of a circular membrane against the dimensionless adhesion potentialβ.

whereνc is the root of (8) corresponding toξc. Then, since the ratioβ0/ξ0 is a strictly increasing
function ofν which ranges from 1 toπ2 for −1 < ν < 0, we conclude thatνc must fall in the
latter interval for (11) to be valid. Finally, sinceβ0 is strictly decreasing andβ0(0) = π

2 , we
learn that, wheneverβ > π

2 , there is an adhering solution withξ = ξc, whose adhering length
L∗ would be larger for larger values ofβ.

Besides this, whenβ > π
2 , a circular membrane brought in contact with the plates will

abruptly adhere to them. Indeed, let us compare the energy of the free circleec := π2

4β and
that of all possible adhering shapes. Figure 2 illustrates the graph of1e := e − ec againstξ
for β = 10; its qualitative features are the same for allβ > π

2 . It clearly shows the energy
gain for the membrane in adhering to the plates atξ = ξc. Sinceξc > 1,1e would further
decrease on squeezing the membrane between the plates, and the adhering lengthL∗ would
accordingly increase, as long asξ > 1. Were the plates free, they would feel anattractiveforce
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Figure 4. Stretched membrane, just before snapping, forβ = 10. The adherent lengthL∗ still
fails to vanish.

Figure 5. A vesicle between two misaligned plates.

exerted by the membrane, which ceases whenξ = 1: that is, whend = d0 := √ κ
2w . Further

squeezing the membrane would be hampered by arepulsiveforce which grows stronger asξ
approaches 0.

On stretching the membrane by pulling the plates apart,ξ keeps increasing also beyond
ξc, whereasL∗ decreases. The membrane stays adherent to the plates until it is so stretched
thatξ reaches the critical valueξ∗ > ξc where1e vanishes. Atξ = ξ∗ the free circle becomes
energetically favourable for the membrane, though the adherent lengthL∗ has not yet vanished.

A snappingtransition is thus predicted to take place whend = d∗ := ξ∗
√

2w
κ

. Figure 3

illustrates the total stretchε := d∗
dc
−1 to which the circular membrane with radiusdc is subject

before snapping back;ε is an increasing function of the adhesion potential, which saturates
at π2 − 1 asβ → +∞. For β = 10, ξ∗ ∼= 8.586, whereasξc

∼= 6.366. Moreover, figure 4
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Figure 6. The total stretchε of a circular membrane against the dimensionless adhesion potential
β, when the angle 2α between the bounding plates is 10◦.

shows the shape of the membrane under maximum stretch, just at the snapping transition. The
relative elongation of a free circle in thex-direction is considerably high, as it amounts to 35%
its initial extension.

We also studied the effect of a slight misalignment of the plates on the snapping of the
membrane under stretch. The situation we envisage is shown in figure 5: 2α is the angle
between the plates, and 2d is the largest gap between them. In this geometry, the adhesion also
serves to keep the vesicle in place. Thescenariowe outlined for the parallel plates remains
qualitatively unaffected. The graph of the total stretchε againstβ is plotted in figure 6 for
α = 5◦: it differs from the one forα = 0◦ by less than 10%.
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